Are Electric Vehicles a Solution for Arctic Isolated Microgrid Communities?

Michelle Wilber,
Jennifer Schmidt,
Tobias Schwoerer,
Tim Bodony,
Matt Bergan,
Joseph Groves,
Tom Atkinson and
Leif Albertson

Our Mission: Develop and disseminate practical, cost-effective and innovative energy solutions for Alaska and beyond.

Our Vision: Alaska leading the way in innovative production, distribution, and management of energy.

Grid Edge

ACEP's Grid Edge research program seeks to explore a range of distributed energy resources to unlock local, sustainable, healthy and cost-effective energy resources available to all in Alaska and in other parts of the nation and world.

These resources include small- and mid-market solar and wind facilities, behind the meter resources, electrified loads and battery storage.

Our research focuses on cold regions and microgrid environments to:

- Improve our understanding of applications and approaches;
- Test, model and optimize controls to integrate variable energy sources;
- Investigate social, technical, economic and regulatory factors affecting grid edge technologies; and
- Engage and grow stakeholder relationships.

Public Resources

EV calculator

Use the EV calculator

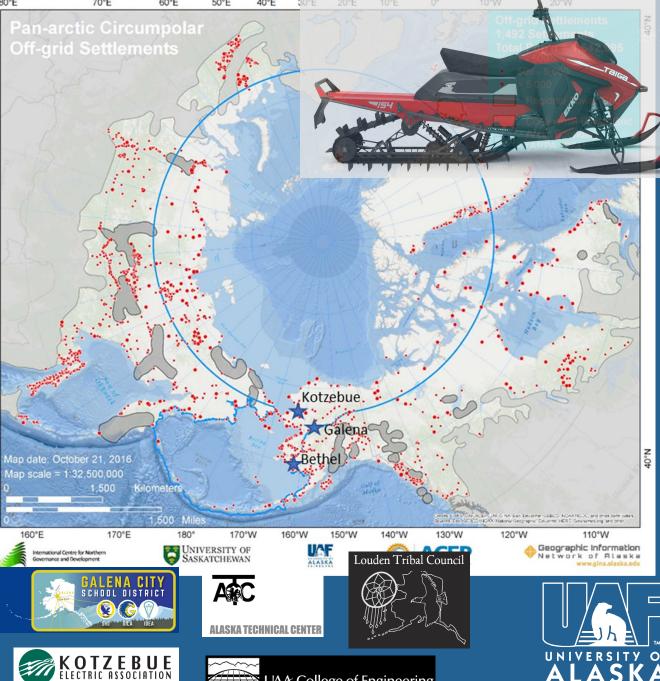
Alaska Solar Manual

Alaska-specific solar energy design information in one easy volume.

NSF NNERectric Vehides

in the Arctic (EMTA)

#2127171, #2127172, #2318384 #2318385

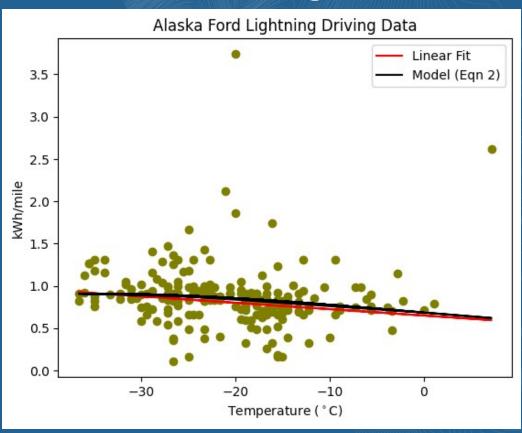


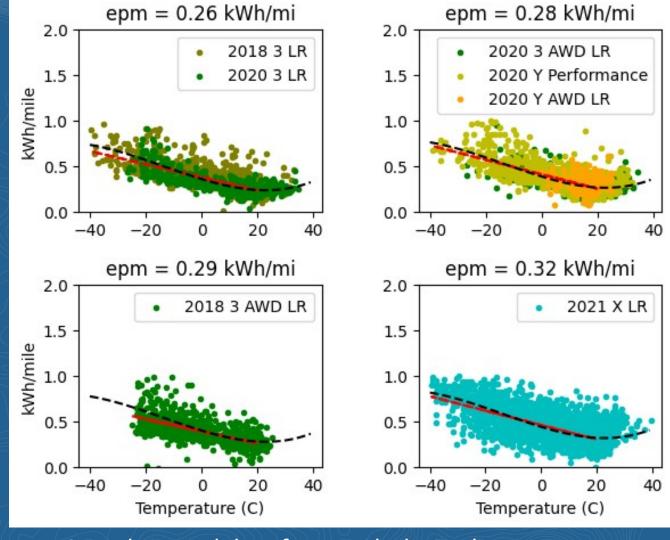
Planning Phase: Community Workshops

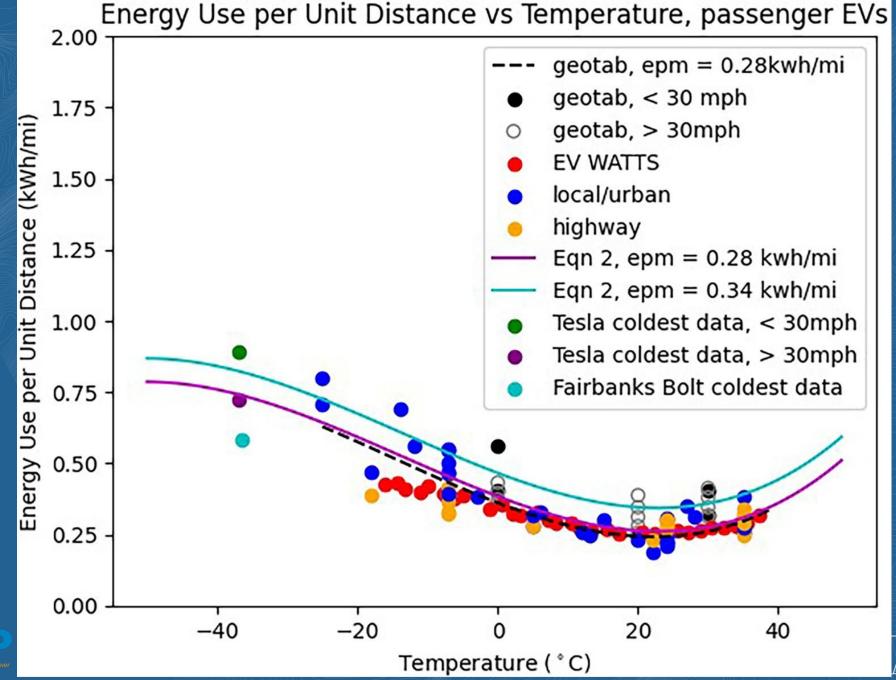
Interviews and workshop in March 20

- Interviewed between 8-10 organizations
- 8-14 participants in Bethel and Kotzebue, and Galena

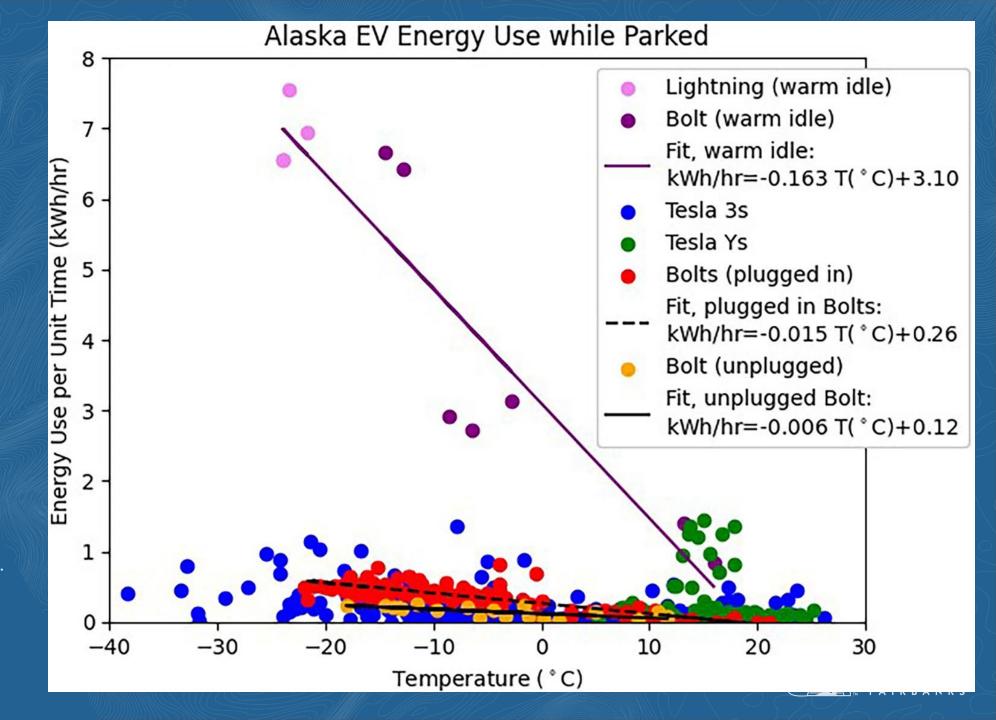
Workshop in November 2022


5-9 participants in Bethel, Kotzebue, and Galena


Table at Cama-i festival in Bethel in March 2023 - >80 visitors


We've collected crowdsourced data from EVs in Alaska and used that to make a calculator to compare an EV to a gas vehicle

Crowdsourced data from 7 Alaska Teslas



Parked Energy Use

Data collection ongoing!

Needed from more vehicle
types in more temperatures.

tinyurl.com/akevcalc

User Input

- Community
- Vehicle type
- Daily mileage
- Price of gas

Advanced:

- Utility info (rate/emissions)
- Vehicle efficiency
- Home solar
- Block heater use and idling for gas vehicle
- Garage/temperature
- Weekend mileage

Alaska Electric Vehicle Calculator

This is a calculator to find out how much it would cost to charge an EV at home in Alaska, and what the carbon emissions would be.

A comparison is also made to an internal combustion engine (ICE) vehicle.

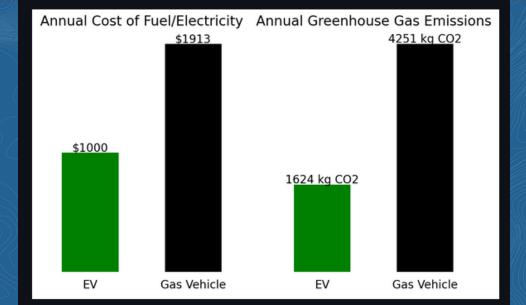
I would like to check and adjust other factors in this calculation.

Select your community (start typing to jump down the list):

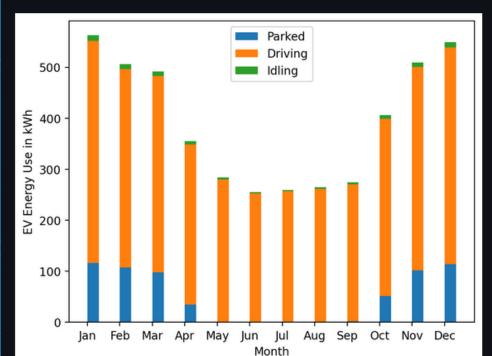
Anchorage

Select your vehicle type:
Car
Truck

How many miles do you drive each day, on average?
30


How many dollars do you pay per gallon of gas?
4.00

20.00



Output

- Cost comparison
- Climate emissions comparison
- Monthly electricity use for EV

Note that costs and emissions for the Internal Combustion Engine vehicle include gas and any electricity used for block/oilpan/etc heating.

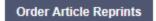
Review for this Journal

Propose a Special Issue

Article Menu

Academic Editors

Lucian Dulău


Jatin S. Nathwani

Subscribe SciFeed

Recommended Articles

Related Info Link

K

Open Access Editor's Choice

Are Electric Vehicles a Solution for Arctic Isolated Microgrid Communities?

by Michelle Wilber 1,* ♥ 0, Jennifer I. Schmidt 2 ♥, Tobias Schwoerer 3 ♥ 0, Tim Bodony 2 ♥, Matt Bergan ⁴ □, Joseph Groves ⁵ □, Tom Atkinson ⁴ □ and Leif Albertson ⁶ □

- Alaska Center for Energy and Power, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
- ² Institute for Social and Economic Research, University of Alaska Anchorage, Anchorage, AK 99508, USA
- ³ International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
- 4 Kotzebue Electric Association, Kotzebue, AK 99752, USA
- 5 Alaska Technical Center, Kotzebue, AK 99752, USA
- ⁶ College of Rural and Community Development, Kuskokwim Campus, University of Alaska Fairbanks, Bethel, AK 99559, USA
- * Author to whom correspondence should be addressed.

World Electr. Veh. J. 2025, 16(3), 128; https://doi.org/10.3390/wevj16030128

Submission received: 18 December 2024 / Revised: 14 February 2025 / Accepted: 19 February 2025 / Published: 25 February 2025

(This article belongs to the Special Issue Impact of Electric Vehicles on Power Systems and Society)

Inputs

Community Data (Table 1)

Power plant emissions per kWh

Gasoline price

Electricity Prices (subsidized and unsubsidized)

Vehicle Data (Table 2)

Rated efficiency of EV

Wattage of ICE engine block heater

Rated fuel efficiency of ICE comparison

ICE gasoline use at warm idle

Co-produced Use Cases (Appendix A)

Type of vehicle

Daily distance driven

Warm 'idle' duration Block heater use duration for ICE

Alaska EV Calculator

model of energy use of vehicles vs. temperature, uses database of hourly temperature data for Alaska Communities

Outputs

Comparison of fueling costs of EV vs ICE

Comparison of emissions of EV vs ICE

×

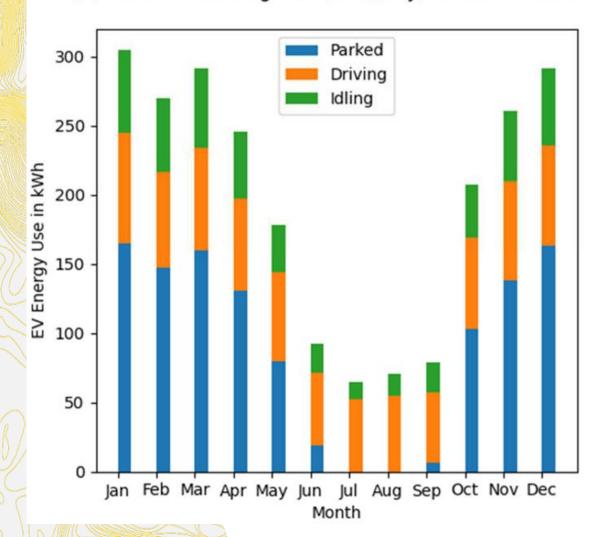
Table 2. Model assumptions by vehicle type, expanded from Wilber and Schmidt, 2024.

Vehicle Type	EV	Internal Combustion Engine (ICE) Assumptions				
	Rated Efficiency, kWh/Mi	Rated Fuel Efficiency, Mi/Gallon	Engine Block Heater, W	Gasoline Used at Warm Idle, Gallons/Hour		
Truck/SUV	0.50 1	20 1	600	0.2 1		
Car	0.28 1	27 1	400	0.4 1		
ATV	0.20 4	15 ²	None	None		
Snowmobile	0.37 5	25 ³	None	None		

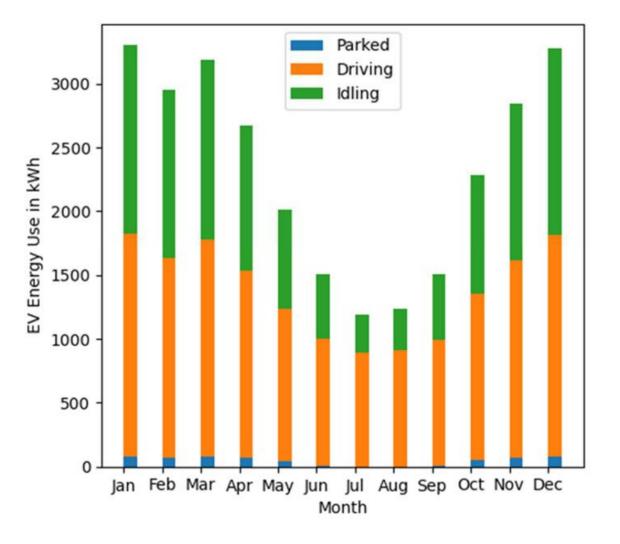
Sources and notes: ¹ [3], ² [40], ³ Based on a 4-stroke engine model [41], ⁴ calculated from range and battery size of some available models [39], ⁵ Taiga Nomad reported to have 23 kWh battery, 62 mi standard range [40].

- What vehicles do you use?
- How many mi a day on average do you drive each of your vehicles?
- In winter, do you plug in your vehicles' block heaters and do you use an electric timer to control their energy use? If so, how many hours do you keep your block heaters turned on?
- How long is the vehicle idled each day when it is cold?

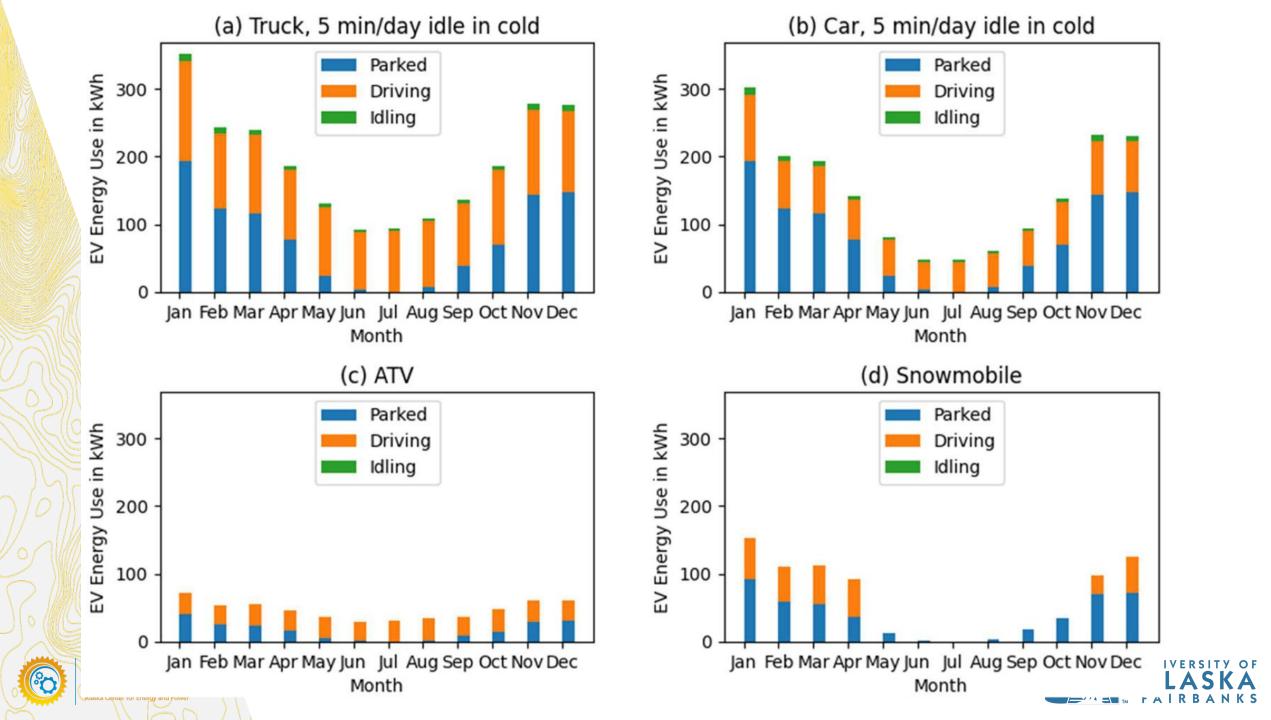
Modeling Results


Inputs

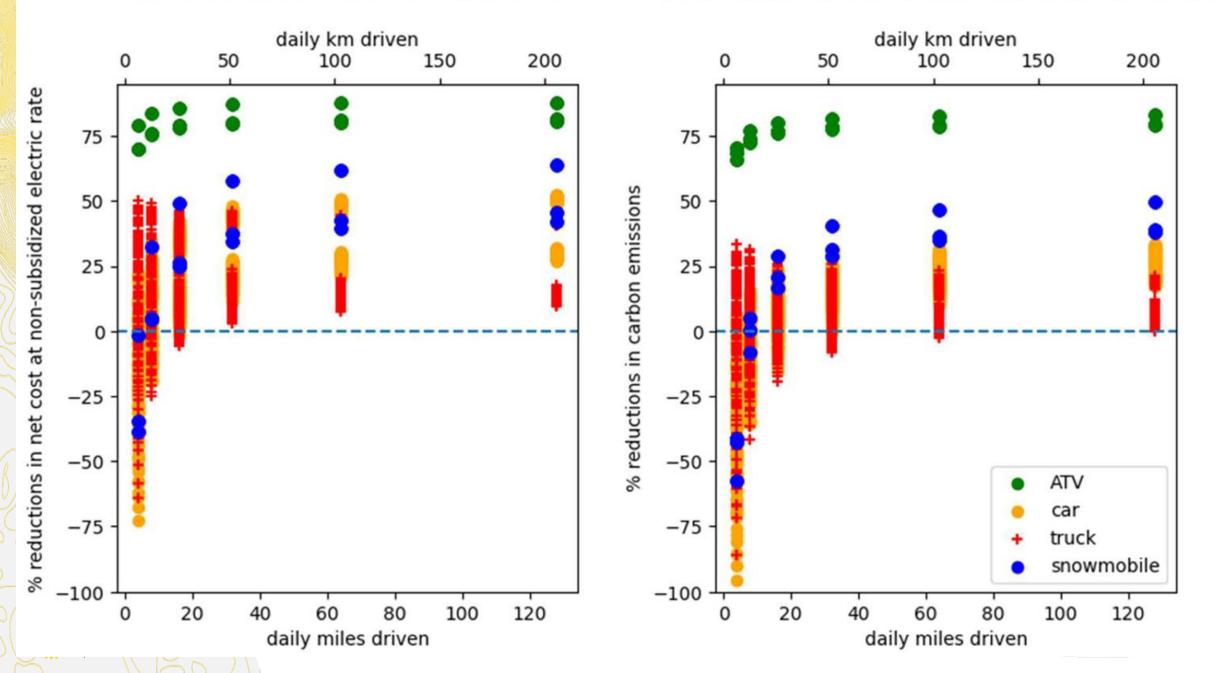
		iputs		modeling results					
Case #	Vehicle and Daily Travel Distance	Block Heater Use— h/Day	Idling Time, Minutes	%Reduction Fuel Cost—Unsubsidized Electric Rates	%Reduction Fuel Costs, Subsidized Electric Rates	%Reduction Emissions			
Kotzebue									
1	6 km (4 mi) weekdays truck ^{1, 2}	12	30	37%	62%	23%			
2	6 km (4 mi) weekdays truck 1, 2	2	20	3%	50%	-32%			
3	21 km (13 mi) weekdays car ¹	4	20	25%	62%	-3%			
4	160 km (100 mi) car (food delivery) 1	0	540	42%	72%	18%			
5	240 km (150 mi) truck (taxi) 1	0	720	47%	74%	25%			
6	45 km (28 mi) weekdays ATV ²	0	0	86%	93%	81%			
7	45 km (28 mi) weekdays snowmobile ²	0	0	52%	77%	32%			
\mathbb{Z}	Bethel								
8	6 km (4 mi) weekdays truck 1, 2	5	0	-26%	31%	-30%			
9	13 km (8 mi) day truck 1, 2	12	60	25%	62%	22%			
10	22 km (14 mi) weekdays truck ^{1, 2}	0	20	-8%	51%	-13%			
11	19 km (12 mi) weekday, 24 km (15 mi) wkend car ¹	12	20	19%	60%	15%			
12	480 km (300 mi) truck (Taxi) 1	0	840	19%	64%	15%			
13	6 km (4 mi) car ²	0	20	-48%	33%	-56%			
Galena									
14	11 km (7 mi) weekdays truck ²	12	5	15%	37%	8%			
15	13 km (8 mi) weekdays truck ²	12	240	34%	56%	26%			
16	32 km (20 mi) weekdays truck ¹	12	5	14%	42%	6%			
17	64 km (40 mi) weekdays truck ¹	12	240	25%	52%	16%			
18	11 km (7 mi) weekday ATV ²	0	0	72%	83%	69%			
19	11 km (7 mi) weekday car ²	12	5	7%	32%	0%			
20	11 km (7 mi) weekday snowmobile ²	0	0	-27%	20%	-44%			

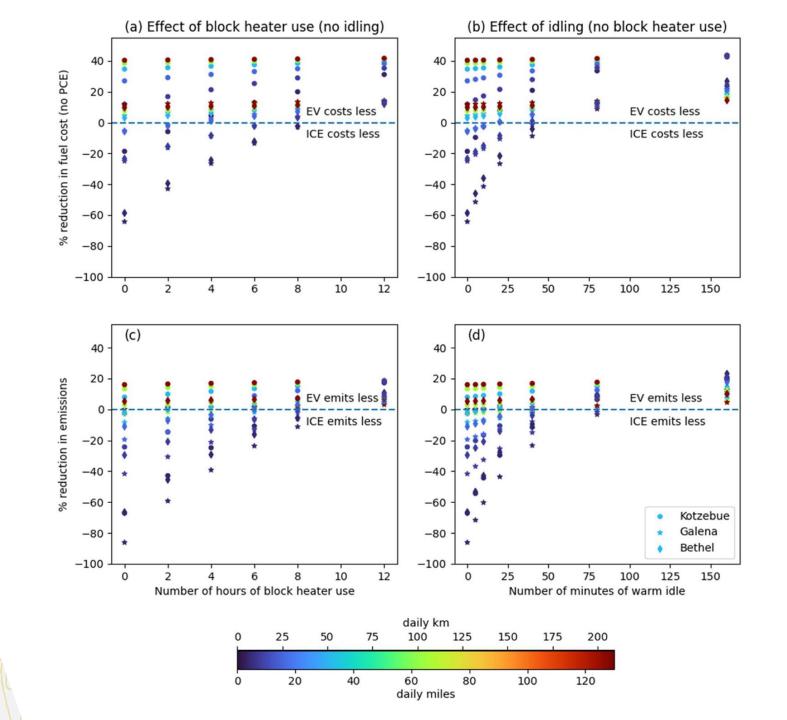


(a) Truck commuting 6km (4mi)/day, 30min idle in cold



(b) Delivery car driving 160km (100mi)/day, 9 hr idle in the cold





(a) Reduction in cost from switch to EV

(b) Reduction in carbon emissions from switch to EV

Questions?

Michelle Wilber mmwilber@alaska.edu

